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The physics of the quantum stress tensor operator is discussed. Although the
problem of defining the expectation values of this operator is reasonably well
understood, the fluctuations around the mean value are not so well understood.
It is shown that the stress tensor correlation function can be decomposed into
three parts, one of which is finite and state dependent, one which is infinite in
the coincidence limit but state independent, and a cross term which is both state
dependent and infinite in the coincidence limit. Possible physical interpretations
of each part are discussed. The fluctuations of the stress tensor in turn induce
fluctuations of the spacetime geometry. The terms in the correlation function
which are singular in the coincidence limit seem to produce drastic fluctuations
of the geometry, leading to a stochastic spacetime. Whether these fluctuations
are observable is an unanswered question.

1. INTRODUCTION: QUANTUM GRAVITY AND SPACETIME
METRIC FLUCTUATIONS

The spacetime metric is the basic variable of gravity theory, analogous
to the vector potential of electromagnetic theory. It is reasonable to expect
that in any theory in which gravity obeys the laws of quantum mechanics,
the metric will undergo quantum fluctuations. Metric fluctuation phenomena
could be regarded as the essence of the quantum behavior of gravity. There
are several reasons as to why these phenomena are likely to yield new physics.

One reason is that fluctuations of the metric can lead to fluctuations of
the lightcone. Classical relativity theory forms a very tight logical structure
with the concept of the lightcone at its heart. The classical lightcone deter-
mines which events may causally influence one another, and which events
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may not. Thus there is a crucial discontinuity across the lightcone. In classical
relativity, massive particles may move at any speed less than that of light,
massless particles must move exactly at the speed of light, and no physical
particles may move faster. Thus even the slightest blurring of the distinction
between timelike, lightlike, and spacelike intervals entails an enormous con-
ceptual shift.

In general relativity, a special case of a lightcone is an event horizon,
such as the boundary of a black hole. The horizon divides the universe into
two parts: the region which can communicate with the black hole’s exterior,
and the region which cannot. Thus fluctuations of the horizon will fundamen-
tally alter the concept of a black hole [1]. There is at least the theoretical
possibility that information could leak out of the interior of a black hole.
Horizon fluctuations could also alter the thermodynamic properties of black
holes. Hawking [2, 3] showed in 1974 that a black hole emits a thermal
spectrum of particles. This forged an elegant link between gravity and thermo-
dynamics, which had been conjectured earlier by Bekenstein [4]. However,
Hawking’s derivation of this effect depends in a crucial way upon the precise
character of a classical horizon. Even very slight fluctuations in the location
of the horizon could invalidate this derivation and hence the link with thermo-
dynamics [5].

There is another area of classical relativity which will need to be reas-
sessed in the light of quantum metric fluctuations. These are the “singularity
theorems” pioneered by Penrose and Hawking [e.g., 6]. These powerful
theorems demonstrate the necessity of singularity formation in gravitational
collapse under conditions that are quite reasonable in a classical system.
These conditions include a restriction on the stress tensor of matter, such as
local positivity of the energy density. This condition is obeyed by classical
matter fields, although it may be violated over a limited region by quantum
fields, as discussed above. For the collapse of a large object, such as a massive
star, quantum violations of the energy conditions are unlikely to play a role
until the collapse has proceeded to a point very close to a classical singularity.
However, the proofs of the singularity theorems rely in a crucial way upon
the notion of focusing of light rays. Metric fluctuations will tend to blur this
focusing property. At the very least, the derivations of these theorems will
have to be reexamined in any theory with a fluctuating metric.

Another intriguing possibility was raised by Pauli. He conjectured many
years ago [7] that lightcone fluctuations could act as a universal regulator to
remove the ultraviolet divergences of quantum field theory. His reasoning
was based upon the observation that these divergences are due to the singulari-
ties of propagators on the lightcone. Hence if the lightcone were to be
smeared out, perhaps the divergences would go away. This conjecture remains
unproven, but is still a fascinating possibility [8–11].
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There are two sources of quantum fluctuations of the spacetime metric:
the intrinsic fluctuations of the quantized metric (“active fluctuations”), and
fluctuations induced by fluctuations of a quantum matter field (“passive
fluctuations”). In a generic situation, one expects both types of fluctuations
to be present. A full theory of active fluctuations is tantamount to a full
quantum theory of gravity, which is still far from realization. It is possible
to develop models of lightcone fluctuations due to linearized quantum gravity
which lead to a reasonable physical picture [12, 13] of a fluctuating lightcone.
However, this topic is beyond the scope of the present work. Here we will
focus our attention upon the passive metric fluctuations, and hence upon
stress tensor fluctuations.

2. THE QUANTUM STRESS TENSOR

The stress tensor Tmn of classical physics carries the information about
the energy density, pressures, and stresses due to a classical field such as the
electromagnetic field. When we pass from a classical field to a quantized
field, a number of new features arise. First, the formal expectation value of
the stress tensor components in an arbitrary quantum state is divergent. This
is a reflection of the infinite zero-point energy of a quantum field. Such a
field is an infinite collection of quantum harmonic oscillators, each with a
ground-state energy proportional to the oscillator’s frequency.

For a system with a finite number of degrees of freedom, such as the
atoms in a crystal lattice, this energy is finite and observable. For a quantum
field, it cannot be taken literally. Otherwise, one would have all of space
filled with an enormous energy density. In most areas of physics, one can
evade the question with the response that only changes in energy are observ-
able, so what counts is just the shift in the energy density when we change
the quantum state. However, once this energy density becomes the source of
a gravitational field, this answer is no longer adequate. The actual value of
the energy density is the source of gravity, and is hence an observable quantity.
Indeed, we know from cosmological data that the average energy density in
the universe must be quite small. Anything greater than about 10229 g/cm3

would have a noticeable effect on the current rate of expansion of the universe
[e.g., 14].

Thus we are forced to conclude that the quantum stress tensor must be
redefined by a renormalization procedure. This topic has been thoroughly
investigated in recent decades, and can be considered to be a solved problem
[15]. In the case of a flat spacetime, this renormalization takes the simple
form of subtracting the vacuum expectation value. Thus if ^Tmn& denotes the
expectation value of the stress tensor in an arbitrary quantum state, and ^Tmn&0

that in the Minkowski vacuum state,
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^Tmn&ren 5 ^:Tmn:& 5 ^Tmn& 2 ^Tmn&0 (1)

is the renormalized expectation value, which is finite everywhere for physi-
cally well-behaved quantum states.

The famous Casimir effect [16] is an illustration of the nontrivial physics
associated with a renormalized stress tensor. One considers a pair of parallel,
perfectly reflecting plates. The quantum fluctuations of the electromagnetic
field produce a force of attraction between these plates which is observable
[17, 18]. Here one is seeing an effect of the shift in energy between a
configuration with the plates and one without the plates. One can think of
the plates as shifting the vacuum fluctuations by a finite amount. More
precisely, what has shifted are the fluctuations of the electric and magnetic
fields in the region between the plates. The electric field, for example, is
fluctuating around a mean value of zero, so that ^E & 5 0, but ^E 2& Þ 0. Of
particular interest is that the renormalized energy density between the plates
is negative; ^rren& , 0. (This is consistent with the attractive nature of the
Casimir force.) In classical physics, a negative energy density for the electro-
magnetic field is not possible; the energy density is proportional to E 2 1
B2, a positive-definite quantity. The energy density of a quantum stress tensor
evades this constraint by virtue of being a difference between two ill-defined
quantities. Some simple examples of states with negative energy are generated
in the moving mirror models of Fulling and Davies [19, 20].

The existence of negative energy density in quantum field theory raises
a number of interesting and unsolved problems as to the nature of the gravita-
tion field to which such energy will give rise. There are a number of bizarre
solutions of Einstein’s equations which become possible if there are no
restrictions at all on the magnitude and extent of negative energy. These
include “traversable wormholes” [21], which could act as shortcut tunnels
to distant parts of the universe, and “warp drive” spacetimes [22] in which
faster-than-light travel becomes possible. Both of these could conceivably
be converted into a “time machine” [23]. Fortunately (or unfortunately)
quantum field theory does place some strong constraints on the magnitude
and extent of negative energy density [24, 25], which seem to severely limit
these exotic possibilities.

3. STRESS TENSOR FLUCTUATIONS

We now come to the key problem of this paper: how to define the
quantum fluctuations of the stress tensor for a matter field. In principle, the
problem is no different from that of defining the fluctuations in any other
variable. One wishes to compare the average of the square of the variable
with the square of its average. In quantum field theory we encounter the
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special problem of ultraviolet divergences. We have already seen this above
when the issue of defining the expectation value of the stress tensor or of
the squared electric field was addressed. In that case, it is possible to circum-
vent the divergence problem with the simple subtraction of a state-independent
quantity. The study of stress tensor fluctuations requires one to be able to
define expectation values of products of stress tensor operators, such as
^Tmn(x)Trs(x8)&, which is considerably more challenging. This problem is
difficult enough in flat spacetime, so our attention will be restricted to that
case. Let T(x) 5 :f1(x)f2(x): be a stress tensor component (a normal-ordered
quadratic operator), such as the energy density. Here f1 and f2 are free
quantum fields or derivatives of free fields. The expectation value of T in
any physically realizable state is finite. In Minkowski spacetime, normal
ordering simply means subtraction of the expectation value in the Minkowski
vacuum state:

T(x) 5 :f1(x)f2(x): 5 f1(x)f2(x) 2 ^f1(x)f2(x)&0 (2)

Now consider a product of stress tensors at different points. It may be shown
using Wick’s theorem that

T(x)T(x8) 5 S0 1 S1 1 S2 (3)

where

S0 5 ^f1(x)f1(x8)&0 ^f2(x)f2(x8)&0 1 ^f1(x)f2(x8)&0 ^f2(x)f1(x8)&0 (4)

S1 5 :f1(x)f1(x8): ^f2(x)f2(x8)&0 1 :f1(x)f2(x8): ^f2(x)f1(x8)&0

1 :f2(x)f1(x8): ^f1(x)f2(x8)&0 1 :f2(x)f2(x8): ^f1(x)f1(x8)&0 (5)

and

S2 5 :f1(x)f2(x)f1(x8)f2(x8): (6)

Thus the operator product T(x)T(x8) consists of a purely vacuum part S0, a
fully normal-ordered part S2, and a part S1 which is a cross term between
the vacuum and normal-ordered parts.

As an aside, let us here briefly discuss the operator ordering problem
in quantum theory. It is well known that observables in quantum mechanics
are associated with operators that generally do not commute with one another.
This leads to an essential ambiguity in constructing a quantum theory from
a classical theory. Various proposals have been made for resolving this ambi-
guity [26]. Here we will adopt the symmetrization approach. Thus if f1 and
f2 are noncommuting operators, the classical expression f1f2 should be
replaced by the quantum operator 1–2 (f1f2 1 f2f1). Note that the use of
normal ordering (in which creation operators are moved to the left and
annihilation operators are moved to the right) is a separate issue. For quadratic
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operators, as in Eq. (2), normal ordering is just a shorthand for subtraction
of the Minkowski vacuum expectation value. For quartic operators, the
decomposition of Eq. (3) is a mathematical identity. The challenge here will
be to give a physical interpretation of each piece.

So long as x and x8 are distinct non-lightlike-separated points, all three
terms on the right-hand side of Eq. (3) have finite expectation values. How-
ever, in the coincidence limit, x8 5 x, only the fully normal ordered part
remains finite. The purely vacuum part does not pose a serious problem, as
we can restrict our attention to the difference in the expectation value in an
arbitrary state and in the vacuum state:

^T(x)T(x8)& 2 ^T(x)T(x8)&0 5 ^S1& 1 ^S2& (7)

Although ^S2& is always finite, ^S1& is both infinite and state dependent in the
coincidence limit. Thus ^T 2(x)& is not well defined. This means that it is not
possible to define such quantities as the squared energy density or pressure
in a straightforward manner so long as this term is present.

There seem to be two possible approaches to this problem. One is to
impose some additional renormalization to remove the infinity, and the other
is to replace the local operator products by finite spatially or temporally
averaged quantities. If one adopts the former approach, the simplest possibility
is to drop the cross term S1 and use only the fully normal ordered part. This
approach was used in refs. 27–29, where it was shown that one obtains the
correct classical limit in the sense that

^:T(x)T(x8):& 5 ^S2& 5 ^T(x)& ^T(x8)& (8)

if the quantum state is a coherent state. This would imply that a classical
field excitation, which is described by a coherent state, exhibits no quantum
fluctuations in its stress tensor. (The generalization of this approach to curved
spacetimes has been discussed by Phillips and Hu [30].)

3.1. Physics of the Normal Ordered Term

Let us first consider the fluctuations of the energy density which arise
from the fully normal ordered term S2. Let

r 5 :Ttt: (9)

be the (normal-order) energy density operator. It has a finite expectation
value everywhere in all physically realizable quantum states. Let ^r2&2 5
^:r2:& be the fully normal ordered energy density at a point. Define the
dimensionless measure of the energy density fluctuations:
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D 5
^r2&2 2 ^r&2

^r2&2
(10)

As it should be, this quantity is small in a system which is nearly classical,
such as that described by a coherent state with large amplitude.

However, in other states such as a thermal state, there can be large energy
density fluctuations. When these fluctuations couple to the gravitational field,
large metric fluctuations can arise. Consider a box filled with a thermal bath
of photons. The stress tensor fluctuations not only cause fluctuations in the
local gravitational field of the box, but also radiate gravitons. The rate of
energy loss by graviton emission was calculated in ref. 28, where it was
shown that the emitted power from a sphere of radius R is

P 5 (1.1 3 10265 ergs/s)R3 T ln(160RT ) (11)

where T is the temperature in degrees Kelvin, and R is in centimeters. Under
normal circumstances, this effect is unmeasurably small. Nonetheless, it can
have a significant effect. Some authors [31, 32] have conjectured the existence
of regions of the universe, such a confined exotic phase of matter, that couple
very weakly with the rest of universe. These regions would still be expected
to cool slowly by graviton emission, and if they were formed in the early
universe, could have an internal temperature of no more than 10 MeV at the
present time. If such regions exist, their cooling is a nontrivial consequence
of quantum gravity effects.

It is also of interest to examine the energy density fluctuations in a
single mode squeezed state .c& 5 .z, z&. This two-parameter family of states
[33] includes the classical-like coherent states in the limit that z 5 0, but
also includes states with very nonclassical properties when .z. is large. The
latter include states which exhibit local negative energy densities. If one
calculates D for a squeezed state, the result is always at least of order unity
whenever the energy density ^r& is negative [29]. This suggests that negative
energy densities are highly fluctuating. Furthermore, the gravitational field
produced by a system with a negative energy density at some points will be
a wildly fluctuating field. A similar result applies to the Casimir effect. It is
shown in ref. 29 that the Casimir energy density is always undergoing signifi-
cant fluctuations. For the case of a scalar field, one finds that D $ 1–3 for
arbitrary boundary conditions. Given that it is very difficult to study the
Casimir effect for generic boundary conditions, this is a remarkable result
and one which holds regardless of whether the Casimir energy density is
positive or negative. It implies that the gravitational force on test particles
produced by Casimir energy density is necessarily undergoing large fluctua-
tions. The Hawking flux from a black hole may also be shown to be undergoing
fluctuations of order unity on time scales of the order of the light travel time
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across the black hole [34]. This suggests a picture in which the mean mass
of the black hole monotonically decreases, but the actual mass undergoes
rapid fluctuations around this mean value. Thus the normal ordering approach
seems to lead to a physically consistent picture.

3.2. Physics of the Cross Term

It is still natural to wonder whether or not there is some nontrivial
physics hidden in the S1 cross term. If so, it can only be manifest when one
uses time-averaged quantities as the physical observables, rather than local
quantities. Various approaches to this subject have been offered, including
that of Barton [35], who uses time-averaged stress tensor components to
study the fluctuations of the Casimir force. The stress tensor operator is both
the source of gravity and the source of forces on material bodies. Thus one
might hope to learn about the quantum nature of gravity by studying the
more experimentally accessible force fluctuations on mirrors.

There is one difference that needs to be borne in mind, however. Real
mirrors become transparent to electromagnetic radiation at about the plasma
frequency of the material in the mirror, typically in the ultraviolet part of
the spectrum. Thus there is a natural cutoff which prevents the quantum
fluctuation effects from ever becoming too large. The remarkable property
of the Casimir force is not that it is finite, but rather that it is independent
of this cutoff. Whether the fluctuations of the force are also cutoff independent
is not yet clear. In the case of gravity, there does not seem to be any natural
cutoff short of the Planck scale. If one computes the contribution of the cross
term to such physical effects as graviton emission by a thermal bath using
a Planck scale cutoff, the result will be far too large. If such a cutoff actually
controlled the scale of the metric fluctuations, quantum gravity effects would
have already been observed. Microwave ovens, for example, would not be
able to function because of the enormous energy dissipation from graviton
emission. Thus if the cross term is to be taken seriously, we need an approach
which leads to cutoff-independent results. Here we will outline such an
approach based upon the Langevin equation.

To illustrate the basic ideas, let us consider a mirror with mass m which
starts from rest at time t 5 0. The mean velocity and mean squared velocity
at t 5 t are

^v& 5
1
m #

t

0

^F & dt (12)

and
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^v2& 5
1

m2 #
t

0
#

t

0

^F(t)F(t8)& dt dt8 (13)

Here F is the force operator describing the force exerted by a quantum field
upon the mirror. The force operator is in turn formed from components of
the stress tensor operator. For the case of a perfectly reflecting mirror in one
spatial dimension, it may be expressed as

F 5 2 :T rt: (14)

where :Trt: 5 T rt is the energy flux impinging upon the mirror. The force
correlation function ^F(t)F(t8)& has a decomposition of the form of Eq. (3).
The purely vacuum term S0 can be ignored on the grounds that we are
interested in the change in the mean squared velocity when we change the
quantum state from the Minkowski vacuum to some other state. The fully
normal ordered part S2 poses no fundamental problems because it is finite
everywhere. However, the ^S1& cross term poses the problem of being singular
at t 5 t8. Its contribution to ^v2& is of the form

^v2&1 5 #
t

0
#

t

0

F(t, t8)
(t 2 t8)2 dt dt8 (15)

where F(t, t8) is a finite function which depends upon the choice of quantum
state. This integral is formally divergent. However, there is a trick which
may be employed to redefine it to be a finite integral. This trick has been
used by various authors under the rubrics of “generalized principle value”
[36] or “differential regularization” [37]. In any case, it involves writing the
singular factor as a derivative of a less singular function, and then integrating
by parts. If we assume that F and its first two derivatives vanish as t → 0
and t → t, then the surface terms vanish, and we can write

^v2&1 5
1
2 #

t

0
#

t

0

[t t8 F(t, t8)] ln[(t 2 t8)2] dt dt8 (16)

The singularity of the integrand at t 5 t8 is now clearly integrable.
The resulting integral may be evaluated explicitly for various special

cases [34], such as a single mode coherent state or a thermal state. In both
cases, one finds that ^v2& grows linearly in time:

^v2& } t, t → ` (17)

In the case of a thermal state at temperature T in one spatial dimension,

^v2&1 , 16p
33

T 3

m2 t (18)

whereas the contribution from the normal ordered term is of the same form,
but 1/3 as large:
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^v2&2 , 16p
99

T 3

m2 t (19)

Thus the cross term yields the dominant contribution here and apparently
cannot be ignored if the procedure we have adopted for defining it is correct.

The same basic principles used in the problem of a mirror in one spatial
dimension may also be applied in more general contexts. For example, the
cross term contributes to the long-term mass fluctuations of an evaporating
black hole in a way similar to the normal ordered term, but the effect of the
former is three times that of the latter. In three spatial dimensions, the analog
of Eq. (15) contains a singular factor of (t 2 t8)24, and the analog of Eq.
(16) contains four derivatives of F, but otherwise one can carry through the
same calculations.

In the case of a coherent state, the effect we are discussing is just that
of radiation pressure fluctuations, which are of great interest to designers
of laser interferometer detectors of gravity waves, such as LIGO. These
fluctuations were first treated by Caves [33] using a different approach. It
will be of interest to apply the method outlined here to specific situations
such as that of LIGO and compare the results with those of Caves.

The stress tensor describes both the force on material bodies as well as
the source of the gravitational field. If one retains the cross term, then the
gravitational field must be undergoing violent fluctuations on small time
scales. The physical manifestation of these fluctuations is unclear, but must
somehow show up in the Brownian motion of test particles in this fluctuat-
ing field.

3.3. Physics of the Vacuum Term?

Finally, let us briefly address the question as to whether there can be
any observable consequences of the pure vacuum term S0 in Eq. (4). As
noted earlier, this term is independent of the quantum state and will hence
drop out if the quantity one is measuring involves a difference between two
states, as is typically the case. The vacuum term describes the irreducible
quantum fluctuations which are always present and normally unobservable.
This term is also the most singular in Eq. (3), diverging as (x 2 x8)28 when
x8 → x.

One can remove this vacuum divergence if instead of operators at a
spacetime point, one defines smeared operators by integration over a finite
region of space and time. This procedure is employed in axiomatic approaches
to field theory [38]. However, here the smearing is a formal procedure
intended to produce operators with nice mathematical properties. If one wishes
to give a physical motivation for the smearing, it is necessary to decide what
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sets its spatial and temporal scales. There does not seem to be an obvious
answer to this question.

One might conjecture that the backreaction of the stress tensor fluctua-
tions on the spacetime geometry itself defines a characteristic averaging scale.
Suppose that we average the quantum stress tensor operators over a region
of linear dimension ,, resulting in local root-mean-squared energy densities
of the order of ,24. These fluctuations in turn induce passive metric fluctua-
tions with a typical size s ' ,2/,Pl, where ,Pl is the Planck length. We might
postulate that these fluctuations of the spacetime geometry themselves set
the averaging scale, in which case s ' , ' ,Pl. This leads to a picture in
which spacetime is stochastic on the Planck scale, along the lines originally
proposed by Wheeler. The notion of “spacetime foam” is usually put forward
in a context in which gravity is quantized, but it is of interest to note that
passive metric fluctuations alone could induce Planck-scale stochasticity.

4. SUMMARY AND DISCUSSION

Let us summarize the basic ideas discussed in this paper. The components
of the stress tensor for a quantum field, e.g., the energy density, are formally
divergent, but can be rendered finite by a simple subtraction. This subtraction
amounts to resetting the zero of energy density to be that of the Minkowski
vacuum state, and is the removal of a state-independent quantity. The resulting
energy density in the case of the Casimir effect is the physical manifestation
of the fluctuations of quantum fields. Although the mean value of the fields
themselves are zero, the mean values of the squares of fields can be nonzero.

It is natural to go to the next step and inquire about the fluctuations of
the stress tensor itself. If we wish to determine the degree to which the energy
density is fluctuating, one wants ^r2&, the mean squared energy density. Here
a fundamental problem arises: This quantity is not only infinite, but cannot
be made finite by a state-independent subtraction as was the case for the
energy density itself. This is due to the S1 cross term of Eq. (5), which is
both singular and state dependent. Two viewpoints were considered above.
One is to drop this term and deal only with the finite, fully normal ordered
energy density. This leads to the correct classical limit, Eq. (8), as well as
to finite fluctuations in nonclassical states. The other, more radical, viewpoint
is that the cross term should be retained. In this view, the notion of squared
energy density ceases to have meaning, and one can only talk about space
or time integrals which need to be defined by a subtle integration by parts.

There are several unsolved problems which have been touched upon in
the preceding discussion. One of these is to understand better the physics of
the S1 cross term. If this term is to be taken seriously, it will require rethinking
of the nature of spacetime on small scales. The picture which emerges from



1814 Ford

this term is that of a stress tensor which is undergoing increasingly violent
fluctuations as one goes to smaller and smaller length scales. Nonetheless,
the integrated effect of these fluctuations is finite and often rather small. If
the spacetime geometry is being driven by these violent fluctuations, then it,
too, must have a stochastic character on small scales, yet one that does not
usually manifest itself. If the metric were to fluctuate excessively, observable
effects such as the scattering of light from distant sources would have been
noticed. An outstanding problem is the challenge of quantifying these effects
and placing constraints from observation on the degree of metric fluctuations
[13, 39].

One area where stress tensor fluctuations may play an important role is
in cosmology. Density and gravity wave perturbations may have been created
in the early universe, and then played a significant role in its subsequent
evolution. Some models of galaxy formation [40] trace the origin of galaxies
to quantum fluctuations during a period of inflationary expansion. Several
authors [30, 41, 42] have discussed models in which stress tensor fluctuations
defined by a version of normal ordering play a role. However, if the cross
term is included, the problem becomes much more complicated and has not
yet been addressed.

Another unsolved problem is that of better understanding the fluctuating
forces on material bodies due to stress tensor fluctuations. It is reasonable
to expect that the same principles should apply when the stress tensor is the
source of gravity and when it is the agent for producing a force on an object.
This raises the exciting possibility of experimentally observing the effects
of the cross term. As noted above, these effects take on an added significance
for builders of laser interferometer detectors of gravity waves. If one were
to detect the effects of the cross term on a real mirror, it would indirectly
lead to insights about the quantum nature of the gravitational field and about
the small-scale structure of spacetime.
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